Quality Assurance Site Survey Report for Riverside-Rubidoux

Last updated May, 2014

AQS ID	ARB Number	Site Start Date	Reporting Agency and Agency Code
060658001	33144	09/1972	South Coast AQMD (061)

Site Address	County	Air Basin	Latitude	Longitude	Elevation
5888 Mission Blvd Riverside, CA 92509	Riverside	South Coast	33° 59' 58"N	117° 24' 57"W	248

Detailed Site Information

Local site name		Riversid	verside-Rubidoux				
AQS ID (0606580					
GPS coordinates (decimal degrees)		Latitude	Latitude: 33° 59' 58" Longitude: 117° 24' 57"				
Street Address			ssion Blvd, Riverside, CA				
County		Riversid	e				
Distance to roadways (1	meters)	119; 686					
Traffic count (AADT, y	year)	20,000 /	2012; 60/Valley Way, 14	15,000, 2011			
Groundcover		Gravel					
(e.g. asphalt, dirt, sand)							
Representative statistical		40140-R	iverside-San Bernardino-	Ontario, CA MSA			
(i.e. MSA, CBSA, other	•		T	1			
Pollutant, POC	Carbon Mon	oxide, 1	Nitrogen Dioxide, 2	Ozone, 1			
Parameter code	42101		42602	44201			
Basic monitoring	NAAQS		NAAQS	NAAQS			
objective(s)							
Site type(s)	Population F	Exposure	Population Exposure	Highest			
M 2 (1)	OT AREOTE !	N/C/	GI AMG/DAMG/	Concentration			
Monitor (type)	SLAMS/PA	MS/	SLAMS/PAMS/	SLAMS/PAMS/			
T	NCore	[1 270	NCore 12	NCore 10:			
Instrument manufacturer and	Horiba APM	IA 3/0	Thermo 42i	Thermo 49i			
model							
Method code	158		074	047			
FRM/FEM/ARM/	FRM		FRM	FEM			
other	TIXIVI		TIKIVI	LITIMI			
Collecting Agency	SCAQMD		SCAQMD	SCAQMD			
Analytical Lab	N/A		N/A	N/A			
(i.e.weigh lab, toxics	1 1/11		11/11	1 1/11			
lab, other)							
Reporting Agency	SCAQMD		SCAQMD	SCAQMD			
Spatial scale (e.g.	Neighborhoo	od	Urban	Urban			
micro, neighborhood)							
Monitoring start date	09/1972		09/1972	09/1972			
(MM/DD/YYYY)							
Current sampling	1:1		1:1	1:1			
frequency (e.g.1:3,							
continuous)							
Calculated sampling	N/A		N/A	N/A			
frequency							
(e.g. 1:3/1:1)	0.1.10.1.10.15		01/01/10/01	01/01/10/21			
Sampling season	01/01-12/31		01/01-12/31	01/01-12/31			
(MM/DD-MM/DD)	1		1	1			
Probe height (meters)	1.52		4	4			
Distance from	1.52		1.52	1.52			
supporting structure (meters)							
Distance from	N/A		N/A	N/A			
obstructions on roof	18/73		11/71	17/71			
(meters)							
(meters)	L		1				

Distance from	N/A	N/A	NT/A
	N/A	IN/A	N/A
obstructions not on			
roof (meters)			
Distance from trees	N/A	N/A	N/A
(meters)			
Distance to furnace or	N/A	N/A	N/A
incinerator flue			
(meters)			
Distance between	N/A	N/A	N/A
collocated monitors			
(meters)			
Unrestricted airflow	360°	360°	360°
(degrees)	300	300	300
Probe material for	Teflon	Teflon	Teflon
reactive gases	1 CHOII	1 CHOII	1 CHOII
(e.g. Pyrex, stainless			
steel, Teflon)	7.2	0.2	0.4
Residence time for	7.3	9.2	8.4
reactive gases			
(seconds)			
Will there be changes	No	No	No
within the next 18			
months? (Y/N)			
Is it suitable for	N/A	N/A	N/A
comparison against			
the annual PM2.5?			
(Y/N)			
Frequency of flow	N/A	N/A	N/A
rate verification for			
manual PM samplers			
Frequency of flow	N/A	N/A	N/A
rate verification for	14/71	14/14	1471
automated PM			
analyzers	Nightly	Nightly	Nightly
Frequency of one-	mignuy	Nightly	Nightly
point QC check for			
gaseous instruments	10/16/2012	10/16/0012	12/1/2012
Last Annual	12/16/2013	12/16/2013	12/16/2013
Performance			
Evaluation for			
gaseous parameters			
(MM/DD/YYYY)			
Last two semi-annual	N/A	N/A	N/A
flow rate audits for			
PM monitors			
(MM/DD/YYYY,			
MM/DD/YYYY)			
· · · · · · · · · · · · · · · · · · ·		•	ı l

Pollutant, POC	Continuous PM2.5,	Continuous PM2.5, 4	Continuous PM10,	24 Hour VOCs, 4
	PM Coarse, 9		PM Coarse, 9	
Parameter code	88101	88502	85101	See Table 26
Basic monitoring	NAAQS	NAAQS	NAAQS	NAAQS/Research
objective(s)				Support
Site type(s)	Highest	Highest	Highest	Highest
	Concentration	Concentration	Concentration	Concentration

SLAMS	SLAMS	SLAMS	NATTS
Met One BAM 1020	Met One BAM 1020	Met One BAM 1020	RM Env. 910
			See Table 26
FEM	Non-FEM	FEM	Other
			SCAQMD
N/A	N/A	N/A	SCAQMD
CCAOMD	CCAOMD	CCAOMD	CCAOMD
			SCAQMD Neighborhood
Neighborhood	Neighborhood	Neighborhood	Neighborhood
12/2008	02/2006	07/30/2011	09/2007
12/2000	02/2000	07/30/2011	07/2007
1.1	1.1	1.1	1:6
N/A	N/A	N/A	N/A
01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
			4
2	2	2	1
27/1	27/1	27/	
N/A	N/A	N/A	N/A
N/A	NT/A	NI/A	N/A
IN/A	IN/A	IN/A	IN/A
N/A	N/A	N/A	N/A
1771	14/11	1771	
N/A	N/A	N/A	N/A
1(Flow <200 lpm)	1(Flow <200 lpm)	4	N/A
360°	360°	360°	360°
27/1	27/	27/	
N/A	N/A	N/A	Stainless steel
N/A	N/A	N/A	8.4
11/71	1V/A	11/71	0.4
No	No	No	No
No, unless the manual	N/A	No	N/A
	Met One BAM 1020 170	Met One BAM 1020 Met One BAM 1020 170 731 FEM Non-FEM SCAQMD SCAQMD N/A N/A SCAQMD Neighborhood 12/2008 02/2006 1:1 1:1 N/A N/A 01/01-12/31 01/01-12/31 4 2 N/A N/A N/A N/A N/A N/A N/A N/A 1(Flow < 200 lpm)	Met One BAM 1020 Met One BAM 1020 Met One BAM 1020 170 731 122 FEM Non-FEM FEM SCAQMD SCAQMD SCAQMD N/A N/A N/A SCAQMD SCAQMD SCAQMD Neighborhood Neighborhood Neighborhood 12/2008 02/2006 07/30/2011 1:1 1:1 1:1 N/A N/A N/A 01/01-12/31 01/01-12/31 01/01-12/31 4 2 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1(Flow < 200 lpm)

comparison against the annual PM2.5?	sampler has missing data.			
(Y/N)				
Frequency of flow rate verification for manual PM samplers	N/A	N/A	N/A	N/A
Frequency of flow rate verification for automated PM analyzers	Monthly	Monthly	Monthly	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	Semi Annually
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	12/18/13
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	06/28/2013, 12/13/2013	06/28/2013, 12/13/2013	06/28/2013, 12/13/2013	N/A

Pollutant, POC	24 Hour VOCs, 8	24 Hour VOCs, 2	3 Hour VOCs, 1	
Parameter code	See Table 26	See Table 26	See Table 26	
Basic monitoring objective(s)	Research support	Research support	Research support	
Site type(s)	Highest	Highest	Highest	
	Concentration	Concentration	Concentration	
Monitor (type)	NATTS/QA	PAMS	PAMS	
	Collocated			
Instrument	RM Env. 910	RM Env. 910	RM Env. 910/912	
manufacturer and model			hour	
Method code	See Table 26	See Table 26	See Table 26	
FRM/FEM/ARM/	Other	Other	Other	
other				
Collecting Agency	SCAQMD	SCAQMD	SCAQMD	
Analytical Lab	SCAQMD	SCAQMD	SCAQMD	
(i.e.weigh lab, toxics				
lab, other)				
Reporting Agency	SCAQMD	SCAQMD	SCAQMD	
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	
micro, neighborhood)				
Monitoring start date	11/2004	07/2009	06/2009	
(MM/DD/YYYY)				
Current sampling	1:Every other month	1:6	1:3 Intensive season	
frequency (e.g.1:3,	-			
continuous)				
Calculated sampling	N/A	N/A	N/A	

frequency				
(e.g. 1:3/1:1)				
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	07/01-09/30	
Probe height (meters)	4	4	4	
Distance from	1	1	1	
supporting structure	1	1		
(meters)				
Distance from	N/A	N/A	N/A	
obstructions on roof	IV/A	IVA	IV/A	
(meters)				
Distance from	N/A	N/A	N/A	
	N/A	N/A	N/A	
obstructions not on				
roof (meters)	27/4	27/4	27/4	
Distance from trees	N/A	N/A	N/A	
(meters)	27/1	27/	27/	
Distance to furnace or	N/A	N/A	N/A	
incinerator flue				
(meters)				
Distance between	N/A	N/A	N/A	
collocated monitors				
(meters)				
Unrestricted airflow	360°	360°	360°	
(degrees)				
Probe material for	Stainless steel	Stainless steel	Stainless steel	
reactive gases				
(e.g. Pyrex, stainless				
steel, Teflon)				
Residence time for	8.3	6.3	6.3	
reactive gases				
(seconds)				
Will there be changes	No	No	No	
within the next 18				
months? (Y/N)				
Is it suitable for	N/A	N/A	N/A	
comparison against	1,112	1,112	1,712	
the annual PM2.5?				
(Y/N)				
Frequency of flow	N/A	N/A	N/A	
rate verification for	11/11	1 1/11	1771	
manual PM samplers				
Frequency of flow	N/A	N/A	N/A	
rate verification for	14/11	14/11	14/11	
automated PM				
analyzers				
Frequency of one-	Semi Annually	Semi Annually	Semi Annually	
point QC check for	John Annually	Sciiii Aililualiy	Jenn Annuany	
gaseous instruments				
Last Annual	12/18/13	12/18/13	12/18/13	
Performance	14/10/13	14/10/13	14/10/13	
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)				
Last two semi-annual	N/A	N/A	N/A	
flow rate audits for	11/11	1W/A	1WA	
110 w rate audits 101				

PM monitors		
(MM/DD/YYYY,		
MM/DD/YYYY)		

Pollutant, POC	VOCs, N/A	24 Hour PM2.5, 2	24 Hour PM2.5, 1	Speciated PM2.5, 11
Parameter code	N/A	88101	88101	See Table 26
Basic monitoring	Research support	NAAQS	NAAQS	Research support
objective(s)				
Site type(s)	Highest	Highest	Highest	Highest
	Concentration	Concentration	Concentration	Concentration
Monitor (type)	CA Air Toxics	SLAMS/QA Collocated	SLAMS	SLAMS
Instrument manufacturer and model	RM Env. 910	Andersen RAAS PM2.5, B Sampler QA Collocated	Andersen RAAS PM2.5, A Sampler	Met One SASS
Method code	N/A	780,120	780, 120	See Table 26
FRM/FEM/ARM/ other	Other	FRM	FRM	Other
Collecting Agency	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Analytical Lab (i.e.weigh lab, toxics lab, other)	ARB Toxics	SCAQMD	SCAQMD	SCAQMD
Reporting Agency	ARB	SCAQMD	SCAQMD	SCAQMD
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date (MM/DD/YYYY)	01/1989	01/03/1999	12/04/1998	10/13/2004
Current sampling frequency (e.g.1:3,	1:12	1:6	1:1	1:6
continuous) Calculated sampling frequency (e.g. 1:3/1:1)	N/A	1:6	1:3	No CFR mandated sampling schedule.
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	4	3	3	3
Distance from supporting structure (meters)	1	1.6	1.6	1.6
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A
Distance from trees (meters)	N/A	10	10	10
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A	N/A
Distance between collocated monitors (meters)	N/A	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	2
\ /	1	1	i e	1

(degrees)				
Probe material for	Stainless steel	N/A	N/A	N/A
reactive gases				
(e.g. Pyrex, stainless				
steel, Teflon)		377	27/1	2711
Residence time for	8.3	N/A	N/A	N/A
reactive gases				
(seconds)	NT.	NT.	NT.	N
Will there be changes	No	No	No	No
within the next 18				
months? (Y/N) Is it suitable for	N/A	Yes	Yes	N/A
comparison against	IN/A	ies	ies	IN/A
the annual PM2.5?				
(Y/N)				
Frequency of flow	N/A	Monthly	Monthly	Monthly
rate verification for	1,712	1/10IIIII	1.10.maily	1/10/14/15
manual PM samplers				
Frequency of flow	N/A	N/A	N/A	N/A
rate verification for				
automated PM				
analyzers				
Frequency of one-	Semi Annually	N/A	N/A	N/A
point QC check for				
gaseous instruments				
Last Annual	12/18/12	N/A	N/A	N/A
Performance				
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)	NT/A	06/14/2012	06/14/2012	06/14/2012
Last two semi-annual flow rate audits for	N/A	06/14/2013, 12/16/2013	06/14/2013, 12/16/2013	06/14/2013, 12/16/2013
PM monitors		12/10/2013	12/10/2013	12/10/2013
(MM/DD/YYYY,				
MM/DD/YYYY)				
1411411/00/11111)				

Pollutant, POC	Speciated PM2.5,	Speciated PM2.5,	PM2.5 Carbon, N/A	PM2.5 Carbon, N/A
	N/A	N/A		
Parameter code	N/A	N/A	N/A	N/A
Basic monitoring	NAAQS/Research	NAAQS/Research	NAAQS/Research	NAAQS/Research
objective(s)	support	support	support	support
Site type(s)	Highest	Highest	Highest	Highest
	Concentration	Concentration	Concentration	Concentration
Monitor (type)	STN	STN/QA Collocated	STN	STN/QA Collocated
Instrument	Met One SASS,	Met One SASS,	URG-3000N,	URG-3000N,
manufacturer and	A Sampler	B Sampler	A Sampler	B Sampler
model				
Method code	N/A	N/A	N/A	N/A
FRM/FEM/ARM/	Other	Other	Other	Other
other				
Collecting Agency	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Analytical Lab	EPA STN	EPA STN	EPA STN	EPA STN
(i.e.weigh lab, toxics				
lab, other)				
Reporting Agency	EPA	EPA	EPA	EPA

Spatial scale (e.g. micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	03/2001	03/2001	05/2007	05/2007
Current sampling frequency (e.g.1:3, continuous)	1:3	1:6	1:3	1:6
Calculated sampling frequency (e.g. 1:3/1:1)	1:3	1:3	1:3	1:3
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	3	3	2	2
Distance from supporting structure (meters)	1.6	1.6	1	1
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A
Distance from trees (meters)	N/A	N/A	N/A	N/A
Distance to furnace or incinerator flue (meters)	N/A	N/A	N/A	N/A
Distance between collocated monitors (meters)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)	1.5(Flow <200 lpm)
Unrestricted airflow (degrees)	360°	360°	360°	360°
Probe material for reactive gases (e.g. Pyrex, stainless steel, Teflon)	N/A	N/A	N/A	N/A
Residence time for reactive gases (seconds)	N/A	N/A	N/A	N/A
Will there be changes within the next 18 months? (Y/N)	No	No	No	No
Is it suitable for comparison against the annual PM2.5? (Y/N)	N/A	N/A	N/A	N/A
Frequency of flow rate verification for manual PM samplers	Monthly	Monthly	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for	N/A	N/A	N/A	N/A

gaseous instruments				
Last Annual	N/A	N/A	N/A	N/A
Performance				
Evaluation for				
gaseous parameters (MM/DD/YYYY)				
Last two semi-annual	06/14/2013,	06/14/2013,	N/A	N/A
flow rate audits for	12/16/2013	12/16/2013		
PM monitors				
(MM/DD/YYYY,				
MM/DD/YYYY)				

Pollutant, POC	Lead, 2	PM10, 2	PM10, 4	Metals, CR6,
				Carbonyls, 1
Parameter code	14129	See Table 26	See Table 26	See Table 26
Basic monitoring objective(s)	NAAQS	NAAQS	NAAQS	NAAQS
Site type(s)	Population Exposure	Highest Concentration	Highest Concentration	Highest Concentration
Monitor (type)	SLAMS	SLAMS	SLAMS/QA Collocated	NATTS
Instrument manufacturer and model	GMW 1200 TSP	Sierra Andersen 1200 SSI, A Sampler	Sierra Andersen 1200 SSI, B Sampler	RM Env. 924, A Sampler
Method code	110	063, 102	063, 102	See Table 26
FRM/FEM/ARM/ other	FRM	FRM	FRM	Other
Collecting Agency	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Analytical Lab (i.e.weigh lab, toxics lab, other)	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Reporting Agency	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Spatial scale (e.g. micro, neighborhood)	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date (MM/DD/YYYY)	09/06/1990	01/01/1988	01/01/1988	01/2007
Current sampling frequency (e.g.1:3, continuous)	1:6	1:3	1:6	1:6
Calculated sampling frequency (e.g. 1:3/1:1)	1:6	1:6	1:6	No CFR mandated sampling schedule.
Sampling season (MM/DD-MM/DD)	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
Probe height (meters)	2	2.5	2.5	3
Distance from supporting structure (meters)	1.6	1.6	1.6	1.6
Distance from obstructions on roof (meters)	N/A	N/A	N/A	N/A
Distance from obstructions not on roof (meters)	N/A	N/A	N/A	N/A

Distance from trees	10	10	10	10
(meters) Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue	IN/A	IN/A	IN/A	N/A
(meters)				
Distance between	N/A	4	4	4
collocated monitors	1071	T	7	T
(meters)				
Unrestricted airflow	360°	360°	360°	360°
(degrees)				
Probe material for	N/A	N/A	N/A	N/A
reactive gases				
(e.g. Pyrex, stainless				
steel, Teflon)				
Residence time for	N/A	N/A	N/A	N/A
reactive gases				
(seconds)				
Will there be changes	No	No	No	No
within the next 18				
months? (Y/N)				
Is it suitable for	N/A	N/A	N/A	N/A
comparison against				
the annual PM2.5?				
(Y/N)	N	27. 11	26 11	27 11
Frequency of flow	Monthly	Monthly	Monthly	Monthly
rate verification for				
manual PM samplers	NT/A	NT/A	NT/A	NT/A
Frequency of flow	N/A	N/A	N/A	N/A
rate verification for automated PM				
analyzers				
Frequency of one-	N/A	N/A	N/A	N/A
point QC check for	IVA	11/17	11/12	11/11
gaseous instruments				
Last Annual	N/A	N/A	N/A	N/A
Performance	1,111	- 1/1.	1,111	- 1/11
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)				
Last two semi-annual	03/11/14,	06/14/2013,	06/14/2013,	N/A
flow rate audits for	12/16/13	12/16/2013	12/16/2013	
PM monitors				
(MM/DD/YYYY,				
MM/DD/YYYY)				

Pollutant, POC	Metals, CR6,	Metals, CR6,	Polycyclic Aromatic	Polycyclic Aromatic
	Carbonyls, 2	Carbonyls, N/A	Hydrocarbons, 1	Hydrocarbons, 2
Parameter code	See Table 26	N/A	N/A	N/A
Basic monitoring	NAAQS	Research support	Research support	Research support
objective(s)				
Site type(s)	Highest	Highest	Highest	Highest
	Concentration	Concentration	Concentration	Concentration
Monitor (type)	NATTS/QA	CA Air Toxics	NATTS	NATTS/QA
	Collocated			Collocated
Instrument	RM Env. 924, B	RM Env. 924	Tisch Env. PUF, A	Graseby PUF, B

manufacturer and	Sampler		Sampler	Sampler
model Method code	See Table 26	N/A	N/A	N/A
FRM/FEM/ARM/	Other	Other	Other	Other
other	Oulci	Other	Other	Other
Collecting Agency	SCAQMD	SCAQMD	SCAQMD	SCAQMD
Analytical Lab	SCAQMD	ARB Toxics	ERG North Carolina	ERG North Carolina
(i.e.weigh lab, toxics	DETIQNID	TIKE TOXICS	LICO NOTHI Caronna	LIKO North Caronna
lab, other)				
Reporting Agency	SCAQMD	ARB	ERG North Carolina	ERG North Carolina
Spatial scale (e.g.	Neighborhood	Neighborhood	Neighborhood	Neighborhood
micro, neighborhood)				
Monitoring start date	01/2007	01/1989	07/2007	07/2007
(MM/DD/YYYY)				
Current sampling	1:Every other month	1:12	1:6	1:Every other month
frequency (e.g.1:3,	,			
continuous)				
Calculated sampling	No CFR mandated	No CFR mandated	No CFR mandated	No CFR mandated
frequency	sampling schedule.	sampling schedule.	sampling schedule.	sampling schedule.
(e.g. 1:3/1:1)				
Sampling season	01/01-12/31	01/01-12/31	01/01-12/31	01/01-12/31
(MM/DD-MM/DD)				
Probe height (meters)	3	3	3	3
Distance from	2	2	2	2
supporting structure				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions on roof				
(meters)				
Distance from	N/A	N/A	N/A	N/A
obstructions not on				
roof (meters)	27/1	27/	27/	27/1
Distance from trees	N/A	N/A	N/A	N/A
(meters)	NT/A	NT/A	NT/A	NT/A
Distance to furnace or	N/A	N/A	N/A	N/A
incinerator flue				
(meters)	2	2	2	2
Distance between collocated monitors	3	3	3	3
(meters)				
Unrestricted airflow	360°	360°	360°	360°
(degrees)	300	300	300	300
Probe material for	N/A	N/A	N/A	N/A
reactive gases	IVA	IVA	IVA	IVA
(e.g. Pyrex, stainless				
steel, Teflon)				
Residence time for	N/A	N/A	N/A	N/A
reactive gases		=		· · · = =
(seconds)				
Will there be changes	No	No	No	No
within the next 18				
months? (Y/N)				
Is it suitable for	N/A	N/A	N/A	N/A
comparison against				
the annual PM2.5?				

(Y/N)				
Frequency of flow rate verification for manual PM samplers	Monthly	N/A	Monthly	Monthly
Frequency of flow rate verification for automated PM analyzers	N/A	N/A	N/A	N/A
Frequency of one- point QC check for gaseous instruments	N/A	N/A	N/A	N/A
Last Annual Performance Evaluation for gaseous parameters (MM/DD/YYYY)	N/A	N/A	N/A	N/A
Last two semi-annual flow rate audits for PM monitors (MM/DD/YYYY, MM/DD/YYYY)	N/A	N/A	N/A	N/A

Pollutant, POC	Carbon Monoxide, 9	Sulfur Dioxide, 9	NOY, 9
Parameter code	42101	42401	42612
Basic monitoring objective(s)	NAAQS	NAAQS	NAAQS
Site type(s)	Population Exposure	Population Exposure	Population Exposure
Monitor (type)	SLAMS/NCore	SLAMS/NCore	SLAMS/NCore
Instrument manufacturer and model	Teledyne 300EU	Thermo 43i-TLE	Thermo 42i-Y
Method code	593	560	574
FRM/FEM/ARM/ other	FRM	FEM	N/A
Collecting Agency	SCAQMD	SCAQMD	SCAQMD
Analytical Lab (i.e.weigh lab, toxics lab, other)	N/A	N/A	N/A
Reporting Agency	SCAQMD	SCAQMD	SCAQMD
Spatial scale (e.g. micro, neighborhood)	Neighborhood	Neighborhood	Urban
Monitoring start date (MM/DD/YYYY)	03/30/2010	08/03/2010	08/19/2010
Current sampling frequency (e.g.1:3, continuous)	1:1	1:1	1:1
Calculated sampling frequency (e.g. 1:3/1:1)	N/A	N/A	N/A
Sampling season (MM/DD-MM/DD)	01/01/-12/31	01/01/-12/31	01/01/-12/31
Probe height (meters)	4	4	4
Distance from supporting structure	1.5	1.5	1.5

(matars)	1			
(meters)	NT/A	NT/A	NT/A	
Distance from	N/A	N/A	N/A	
obstructions on roof				
(meters)	271	27//	27/	
Distance from	N/A	N/A	N/A	
obstructions not on				
roof (meters)				
Distance from trees	N/A	N/A	N/A	
(meters)				
Distance to furnace or	N/A	N/A	N/A	
incinerator flue				
(meters)				
Distance between	N/A	N/A	N/A	
collocated monitors				
(meters)				
Unrestricted airflow	360°	360°	360°	
(degrees)				
Probe material for	Teflon	Teflon	Teflon	
reactive gases				
(e.g. Pyrex, stainless				
steel, Teflon)				
Residence time for	4.2	5.8	5.8	
reactive gases	1.2	3.0	3.0	
(seconds)				
Will there be changes	No	No	No	
within the next 18	110	140	140	
months? (Y/N)				
Is it suitable for	No	No	No	
comparison against	NO	NO	NO	
the annual PM2.5?				
(Y/N)				
	N/A	NT/A	NT/A	
Frequency of flow rate verification for	N/A	N/A	N/A	
manual PM samplers	NT/A	27/4	27/4	
Frequency of flow	N/A	N/A	N/A	
rate verification for				
automated PM				
analyzers				
Frequency of one-	Weekly	Weekly	Weekly	
point QC check for				
gaseous instruments				
Last Annual	12/16/2013	12/16/2013	12/16/2013	
Performance				
Evaluation for				
gaseous parameters				
(MM/DD/YYYY)				
Last two semi-annual	N/A	N/A	N/A	
flow rate audits for				
PM monitors				
(MM/DD/YYYY,				
MM/DD/YYYY)				

Riverside-Rubidoux Site Photos

Looking North from the probe.

Looking East from the probe.

Looking South from the probe.

Looking West from the probe.

Riverside-Rubidoux Site Photos (Cont.)

Looking at the probe from the North.

Looking at the probe from the East.

Looking at the probe from the South.

Looking at the probe from the West.